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テーマ「ともに究め、明日の社会を拓く」との関連

Riemannian manifold:
smooth manifold + inner product on all tangent spaces

Geometric Deep Learning to Generalize EEG Decoders 
Across Days/Subjects

N2

Current electroencephalography (EEG) decoders typically require labeled calibration data for a new day or subject, limiting 
their utility and scalability. Geometric deep learning offers a remedy via combining invariances of Riemannian manifolds with
neural nets to improve EEG decoder generalization across days and subjects with seamless adaptation in the background.
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◼ We developed a geometric deep learning framework that combines feature 
learning capabilities of neural nets (e.g., temporal filters) with invariances (e.g., 
ICA mixing) of Riemannian manifolds.

◼ Using seamless (=unsupervised) adaptation on the manifold of covariance 
matrices, we proposed a lightweight network (=TSMNet) and obtained state-of-
the-art performance in EEG decoder transfer across days and subjects.

◼ Unlike general deep learning models, the architecture of TSMNet is globally 
interpretable, enabling potential applications in healthcare, where model 
interpretation and data-efficiency are key characteristics.

◼ Improving generalization of neurotechnology across days and subjects without
supervised re-calibration will tremendously improve its utility and, thereby, 
facilitate adoption of neurotechnology in tomorrows’ society.

◼ Based on the success of our framework with brain-computer interface (BCI) EEG 
data, we extend our framework to other types of brain data (e.g., fMRI 
connectivity) as well as multimodal brain data (e.g., EEG-fMRI).
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SPDDSMBN: SPDMBN 
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SPDMBN: momentum 
batch norm algorithm 
on the SPD manifold.
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In total: 5 dataset with 573 days of 138 subjects 
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Patterns for TSMNet fitted to day 1 of subject 9.

Model interpretation (BNCI2014001 dataset)
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invariance to linear mixingOur framework
- SPD manifold (e.g., covariance matrices)
- Affine invariance metric (𝛿𝑅) 
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