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Inverse Reinforcement Learning Schemes for Continuous-Time

Deterministic Systems

M=

We have developed two data-driven schemes for inverse reinforcement learning (IRL) of continuous-time linear and nonlinear
deterministic systems. The main objective was to deal with the unknown dynamics without solving an RL problem after each

estimation.
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B The first approach is model-free and the second approach relaxes the confining
assumption that input-state measurements of the demonstrator must be rich.

B Unlike some existing methods, in the second proposed method, the learner and
expert can have different drift dynamics.

B The methods do not require to solve a forward reinforcement learning problem
after each cost function update; that is, they are not nested methods.
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B We will expand our findings to address the Inverse Reinforcement Learning (IRL)

problem in multiplayer games, where the increased number of parameters to be
estimated introduces novel challenges.
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B The proposed methods are online which provide fast solutions to the
reinforcement learning-based control, and have less computational load. These
features are essential in autonomous systems where there is a need to adapt to
possible changes in the task objectives or dynamics of the demonstrator.
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