

Inverse Reinforcement Learning Schemes for Continuous-Time Deterministic Systems

概要

We have developed two data-driven schemes for inverse reinforcement learning (IRL) of continuous-time linear and nonlinear deterministic systems. The main objective was to deal with the unknown dynamics without solving an RL problem after each estimation.

特徴

- The first approach is model-free and the second approach relaxes the confining assumption that input-state measurements of the demonstrator must be rich.
- Unlike some existing methods, in the second proposed method, the learner and expert can have different drift dynamics.
- The methods do not require to solve a forward reinforcement learning problem after each cost function update; that is, they are not nested methods.

今後の展開

We will expand our findings to address the Inverse Reinforcement Learning (IRL) problem in multiplayer games, where the increased number of parameters to be estimated introduces novel challenges.

テーマ「ともに究め、明日の社会を拓く」との関連

The proposed methods are online which provide fast solutions to the reinforcement learning-based control, and have less computational load. These features are essential in autonomous systems where there is a need to adapt to possible changes in the task objectives or dynamics of the demonstrator.

 $\dot{\mathbf{x}} = \mathbf{f}_e + \mathbf{g}\mathbf{u}$

連絡先:脳情報研究所 担当 JABBARIASL Hamed Email:hjabbari@atr.jp

 $\widehat{\mathbf{W}}_V$, $\widehat{\mathbf{W}}_R$

本研究は国立研究開発法人新エネルギー・産業技術総合開発機構(NEDO)の委託業務【JPNP20006】の支援により実施したものです。

